
Quantifying the Encapsulation
of Implemented Software Architectures

Eric Bouwers∗†, Arie van Deursen†, Joost Visser∗‡,

∗Software Improvement Group, †Delft University of Technology,‡Radboud University Nijmegen
Email: e.bouwers@sig.eu, Arie.vanDeursen@tudelft.nl , j.visser@sig.eu

Abstract—Applying encapsulation techniques lead to software
systems in which the majority of changes are localized, which
reduces maintenance and testing effort. In the evaluation of imple-
mented software architectures, metrics can be used to provide an
indication of the degree of encapsulation within a system and to
serve as a basis for an informed discussion about how well-suited
the system is for expected changes. Current literature shows
that over 40 different architecture-level metrics are available
to quantify the encapsulation, but empirical validation of these
metrics against changes in a system is not available.

In this paper we investigate twelve existing architecture
metrics for their ability to quantify the encapsulation of an
implemented architecture. We correlate the values of the metrics
against the ratio of local change over time using the history of
ten open-source systems. In the design of our experiment we
ensure that the values of the existing metrics are representative
for the time period which is analyzed. Our study shows that
one of the suitable architecture metrics can be considered a
valid indicator for the degree of encapsulation of systems. We
discuss the implications of our findings both for the research
into architecture-level metrics and for software architecture
evaluations in industry.

I. INTRODUCTION

When applied correctly, the process of encapsulation en-
sures that the design decisions that are likely to change are
localized [2]. In the context of software architecture, which
is loosely defined as the organizational structure of a software
system including components, connections, constraints, and ra-
tionale [14], the encapsulation process revolves around hiding
the implementation details of specific components.

Whether the encapsulation was done effectively, i.e., to
what extent changes made to the system were indeed localized
to a single component, can only be determined retrospectively
by examining the history of the project. However, for eval-
uation purposes it is desirable to use the current design or
implementation of a system to reason about quality attributes
of the system [9]. Focussing on the implemented architecture,
so-called “late” architecture evaluations [10] should be con-
ducted to determine which actions need to be taken to improve
the quality of an architecture when, for example, the current
implementation deviates substantially from the original design
or when no design documents are available.

A common approach in late architecture evaluations is to
use a metric that can be calculated on a given snapshot of
the system, i.e., the state of a system on a given moment in
time, to reason about changes that will occur subsequently.
On the class level, several metrics have been proposed which
have also been evaluated empirically through a comparison
with historical changes [19].

However, these metrics on the class-level do not reflect
the level of encapsulation on the system-level, i.e., whether
a system is decomposed into a set of independent compo-
nents which hide the details of their implementation. This is
important to determine whether the current architecture is fit
for the changes that need to be made. Moreover, managers
and external evaluators can use this system-level information
to determine which systems within their large, heterogenous
portfolio can benefit the most from architectural refactorings,
and thus allocate resources more effectively [17].

Unfortunately, only a few metrics for encapsulation on the
level of the system exist, and for those that exist no empirical
validation against historical changes has been provided [15].
As a consequence, it is unclear which of the available metrics
are valid to be used as a quantification of the current level of
encapsulation of an implemented architecture. The goal of this
paper is to fill this gap by means of an empirical study.

In this study we focus on 12 architecture-level metrics to
quantify the encapsulation on the system-level. We examine
whether the values of these metrics are correlated with the
success of encapsulation in 10 open-source Java systems with
an average history of six years. To quantify historical encap-
sulation, we follow Yu et al. [26] and classify each change-
set in a system as either local (all changes occur within one
component) or non-local (multiple components are involved
in the change). A high ratio of local change-sets shows that
frequently changing parts of the system were indeed localized,
thus indicating that the encapsulation was done effectively.

The results of our study show that three of the evaluated
architecture metrics, those that are aimed at quantifying the
extent to which components are connected to each other,
are correlated with the ratio of local change-sets. Of these
three, one can be seen as a valid indicator for the success
of encapsulation of a system. In contrast, metrics which are
purely based on the number of components or on the number
of dependencies between components were not found to bear
a relationship to the success of encapsulation.

In the paper, we first introduce our research question in
Section II, after which architecture metrics under evaluation
are discussed in Section III. The design and implementation of
our study is given in Section IV and Section V, the results are
presented in Section VI. In Section VII the presented results
are discussed and put into context. Section VIII discussed
threats to validity, after which related work is discussed in
Section IX. Lastly, Section X concludes the paper.1

1Note that a preliminary version of this study has been published as chapter
eight of this PhD thesis [3]

II. PROBLEM STATEMENT

Following the Goal Question Metric approach of Basili
et al. [1] we define the goal of our study as evaluating existing
software architecture metrics for the purpose of assessing their
indicative power for the level of encapsulation of a software
architecture. The context of our study is late software architec-
ture evaluations from the point of view of software analysts and
software quality evaluators. From this, the following research
question is derived:

Which software architecture metrics can serve as
indicators for the success of encapsulation of an
implemented software architecture?

III. METRICS FOR ENCAPSULATION

As a first step towards answering our research question
we review the architecture metrics currently available in the
literature. The purpose of this review is to select a set of
metrics for this initial study which are a) capable of providing
a system-level indication of the encapsulation of a software
system, and b) can be used within a late architecture evalu-
ation context. Before discussing the selected metrics we first
introduce the model we use to reason about an implemented
software architecture.

In this study, we look at the implemented software archi-
tecture from the module viewpoint [8]. We define a system
to consist of a set of high-level components (e.g., top-level
packages or directories) which represent coherent chunks of
functionality. Each component contains one or more modules
(e.g., source files). Within modules, a unit represents the
smallest block of code which can be called in isolation. Each
module is assigned to a single component and none of the
components overlap.

Directed dependencies exist between both modules (e.g.,
extends or implements relations) and units (e.g., call-relations)
and have an attribute cardinality which represents, for example,
the number of calls between two units. Dependencies between
components are calculated by lifting the dependencies from the
modules/units to the component-level. Both modules and units
have (code-based) metrics assigned to them, for example lines
of code or McCabe complexity [20], which are aggregated
from the module-/unit-level to the component-/system-level.

A. Selected Metrics

Using the overview of Koziolek [15] we identified over 40
metrics in the literature. After applying a selection process to,
amongst others, verify the ability of the metrics to quantify the
level of encapsulation within a system, 12 software metrics
remained for this initial study, these are listed in Table I.
Of these 12 metrics, nine have a clear conceptual relation
to encapsulation in the sense that they quantify the chance
a change can propagate from one component to another, while
three metrics are included as control variables. A detailed
explanation of the evaluated metrics, the complete selection
procedure and the application of the procedure can be found
in this Phd thesis [3, chapter 8].

In the remainder of this section we introduce the selected
metrics using the example system displayed in Figure 1.
This system contains three components (A,B and C), which

A

B C

1

2

3

4

Fig. 1. Example system containing three components with four module-level
dependencies, which are lifted to two component-level dependencies.

have two dependencies (A depends on B, B depends on C).
The sizes of the components are 10, 40, and 20 KLOC for
components A, B, and C, divided over 100, 200, and 300
modules respectively.

The first metric is the Ratio of Cohesive Interactions (RCI)
introduced by Briand et al. [7]. The pessimistic variant of RCI
is defined as the division of the number of known dependencies
between components by the number of possible dependencies
between components. For our example system this would result
in a value of 2 (known dependencies) divided by 6 (possible
dependencies) = 2

6 . Ideally, the value of RCI would be low,
meaning that only a small part of all possible interactions
between components is actually utilized, making it less likely
that changes will propagate between components.

The second metric is introduced by Lakos [18] and is called
Cumulative Component Dependency (CCD). It is defined as
the sum of the number of components needed to test each
components. In our example system the CCD of component
B would be 1 (because it needs component C), and the CCD
of component A would be 2 (since it needs both B and C).
On a system level this results in the sum of all cumulative
dependencies of all components, which in our example would
be 3. Ideally, the value of CCD is low, which should mean
that components are less dependent on each other.

The following two metrics, Average CCD (ACD) and
Normalized CCD (NCD), are variants of the CCD. The NCD
is derived by dividing the CCD by the total number of
components, i.e., 3

3 = 1 in our example. The ACD is defined by
dividing the CCD over the total number of modules in each
component, leading to a value of 100+200+300

3 = 200 for our
example system. On both cases the desired value of the metric
is low, following the same reasoning for CCD.

The Cyclic Dependency Index (CDI) introduced by Sarkar
et al. [23] quantifies the number of cyclic dependencies in the
component graph. Since there are no cyclic dependencies in
our example system the value is 0, but adding a dependency
between component C and A would result in a CDI of 1. Again,
lower values are desired to minimize the chance of changes
being propagated between components.

The following three metrics are derived from our earlier
work on Dependency Profiles [5]. In such a profile the modules
in a component are categorized into four different categories
as displayed in component B of our example. Category 1
is internal code, category 2 is incoming code, category 3 is
outgoing code, and category 4 is transit code.

To derive a system-level value for Internal code, the sizes
of all modules in category 1 is summed and divided by the
total size of the system. This results in a value between 0
and 1 representing the percentage of code which is internal to
components. Ideally, the value of this metric is high, meaning
that there is less code dependent on (or dependent on by)
other components, which lowers the chance of changes being
propagated.

By combining the amount of code in category 2 and 4, we
calculate the Inbound Code metric, i.e., the percentage of code
which is dependent upon from other components. Similarly,
combining the amount of code in categories 3 and 4 gives
us Outbound code, which represents the percentage of code
which depends upon other components. In both cases, the
desired value is low, which would mean that the interface of
each component is small, which in turn reduces the chance of
changes being propagated.

The last non-control metric is the Number of Binary
Dependencies (NBD), which simply counts the number of
dependencies between components. In our example system this
would be 2. Similar to the reasonings above the value of this
metric should be low, which would indicate less dependencies
and thus a lower chance of changes being propagated.

As a validation of our experiment we also take into account
three control variables which quantify the way in which a
system is decomposed into components. These three metrics
are Component Balance [4], Module Size Uniformity Index [23]
and the Number of components (NC). These three metrics
are not aimed towards quantifying the encapsulation of the
system, i.e., they do not quantify the likelihood of changes
being propagated. If the experiment shows a strong correlation
for any of these three metrics the design of the experiment
needs to be critically reexamined.

IV. EXPERIMENT DESIGN

The central question of this paper is which software ar-
chitecture metrics can be used as an indicator for the success
of encapsulation of an implemented software architecture. To
answer this question, we need to determine whether the metrics
listed in Table I are indicative for the degree of success of
encapsulation within a system. We achieve this by performing
an empirical study in which we correlate the values of the
selected metrics with historical data that shows the success of
encapsulation within a system in the past.

Since this type of evaluation of system-level architectural
metrics has not been done before [15], we define how the
success of encapsulation can be measured in Section IV-A.
Next, in Section IV-B and Section IV-C we define how
metrics based on a single snapshot of a system and a metric
based on changes between snapshots can be compared. The
procedure for correlating the different metrics is discussed in
Section IV-D and augmented in Section IV-E. Lastly, Sec-
tion IV-F provides a summary of the steps in the experiment.

In the design of the experiment we use the term snapshot-
based metric to refer to metrics which are calculated on a
single snapshot of a system (e.g., the number of components
on a specific point in time). All metrics listed in Table I belong
to this category. A metric which is calculated based on changes

between snapshots of a system, for example the number of files
that changes between two snapshots of a system, is referred
to as a historical metric.

A. Measuring Historical Encapsulation

Encapsulation revolves around localizing the design deci-
sions which are likely to change [2] (a process also known as
“information hiding” [21]). In software architecture, measuring
whether the changes made to a system are mainly local or
spread throughout the system can be determined by looking
back at the change-sets of a system.

In an ideal situation, a software system consists of highly
independent components, encapsulating the implementation
details of the functionality they offer. In this situation, a change
to a specific functionality only concerns modules within a
single component, which makes it easier to analyze and test
the change made. Naturally, it is not expected that all change-
sets of a system concern only a single component. However, a
system with a high level of encapsulation is expected to have
more localized changes compared to a system in which the
level of encapsulation is low.

In this experiment, a change-set is defined as a set of
modules (see Section III) that are changed together in a unit of
work (e.g., a task, a commit or a bug-fix). Using the existing
definition of Yu et al. [26] as a basis, each change-set is
categorized as either local (all changes occur within a single
component) or non-local (multiple components are involved in
the change).

A change-set series is a list of consecutive change-sets
representing all changes made to a system over a period
of time. A series of change-sets can contain change-sets
concerning different bug-fixes, it is not necessary for a change-
set series to contain only change-sets that belong together. Our
key-measure of interest is the ratio of change-sets in a series
that is local: if this ratio is closer to one it means that more
change-set are localized, which indicates a system with better
encapsulation.

More formally, let S = 〈M,C〉 be a system, consisting of a
set of modules M and a set of components C. Each module is
assigned to a component and none of the components overlap.
For each module m ∈M the containing component is obtained
through a function: component : M→C.

A change-set cs = {m1 . . .mn} is a set of modules
that have been changed together. For a change-
set series CSs = (cs1,cs2, . . . ,csm) we can determine
for each change-set whether it is local by counting
the number of components touched in this change-
set, i.e., a change-set is local if and only if:

isLocal(cs)⇔ |{c|m ∈ cs∧ c = component(m)}|= 1

Given this property, the ratio of local change can be
calculated by a division of the number of local change-
sets by the total number of change-sets in a series:

ratioO f LocalChange(CSs) =
|{cs|cs∈CS∧isLocal(cs)}|

|CS|

In our experiment, we consider a change-set series with
a high ratio of local change-sets to represent a high degree

TABLE I. ARCHITECTURE-LEVEL METRICS SUITABLE FOR USE IN SOFTWARE ARCHITECTURE EVALUATIONS

Name Abbr. Src. Description Desired Control
Ratio of Cohesive Interactions RCI [7] Division of known interactions by possible interactions low
Cumulative Component Dependency CCD [18] Sum of outgoing dependencies of components low
Average CCD ACD [18] CCD divided by number of modules low
Normalized CCD NCD [18] CCD divided by the number of components low
Cyclic Dependency Index CDI [23] Normalized number of cycles in the component graph. low
Inbound code IBC [5] Percentage of code which is dependent upon from other components low
Outbound code OBC [5] Percentage of code which depends on code from other components low
Internal code IC [5] Percentage of code which is internal to a component high
Number of Binary Dependencies NBD The number of binary dependencies within a dependency graph low
Component Balance CB [4] Combination of number of components and their relative sizes high x
Module Size Uniformity Index MSUI [23] Normalized standard deviation of the size of the components low x
Number of components NC Counts the number of components in a dependency graph low x

of success in the encapsulation of the system. It is possible to
split up a change-set series into multiple series to obtain insight
into the success of encapsulation for a certain period of time.
However, to obtain an accurate representation of the success
of encapsulation the number of change-sets in a change-set
series must be large enough to calculate a meaningful ratio.
Therefore, the use of longer change-set series (e.g., covering
a longer period of time) is advised.

B. Snapshot-based versus Historical

To compare a snapshot-based metric (a metric calculated on
a specific time such as the number of components of a system)
against a historical metric (a metric calculated on a change-set
series such as the ratio of local change) two input parameters
need to be defined: 1) the exact moment of the snapshot for
the snapshot-based metric and 2) the change-set series for the
historical metric. To increase the accuracy of the calculation of
the historical metric, the change-set series should be as long as
possible. On the other hand, the value of the snapshot-based
metric needs to be representative for the chosen change-set
series, e.g., it should be possible to link each change-set in the
series to the value of the snapshot-based metric.

We obtain this balance by calculating the historical metric
using a change-set series for which the snapshot-based metric
is stable. To illustrate, consider the situation as shown in
Figure 2, which shows the possible behavior of a snapshot-
based metric given a series of change-sets. By instantiating
this hypothetical graph with, for example, the number of
components of a system, we can see that this number is
stable for some periods, but also changes over time. This
means that we cannot use the complete change-set series
(cs0, . . . ,c7) to calculate a historical metric since there is no
single snapshot-based metric value we can compare against.
However, the value of a historical metric based on the two
change-set series (cs0,cs1,cs2,cs3) and (cs4,cs5,cs6) can be
meaningfully compared against the values of the snapshot-
based metric (respectively 3 and 4).

This approach deviates from the commonly used design
(see for example the experiments described in [26], [22]) in
which a recent snapshot of the system is chosen and the
historical metric is calculated based on the entire history of
a system. The implicit assumption made in these experiments
is that the value for the snapshot-based metric (calculated on
the specific snapshot) is relevant for all changes throughout
the history of the system. This assumption may not be valid in
all situations, or should at least be verified to ensure that the
comparison between these two types of metrics is meaningful.

Sn
ap

sh
ot

-b
as

ed
 M

et
ric

cs0 cs1 cs3 cs4 cs7cs2 cs5 cs6

Change-sets

1

2

3

4

Fig. 2. The value of a snapshot-based metric over time determines the change-
set series on which the historical metric should be calculated.

C. Metric Stability

One of the parameters to be instantiated is the definition of
when a metric has changed significantly. For some metrics this
definition is straight-forward, e.g., any change in the number
of components is normally considered to be significant from an
architectural point of view. However, for metrics defined on a
more continuous scale, such as for example RCI, the definition
is less straight-forward.

The definition of when a metric changes has an impact
on the conclusions that can be drawn from the data and
the length of the change-set series for a metric. In general,
the definition of which change in the value of a metric is
significant is most-likely dependent on both the expected
variance in the metric value and the context in which it is
used. For example, the number of components is not expected
to change in a maintenance setting, while during the early
stages of development this number fluctuates heavily. In the
implementation of the experiment, a definition of “stable”
related to the context of our goal is defined in Section V-A.

Note that different metrics are sensitive to different prop-
erties of a system, and that each metric is expected to change
only of this specific property is changed in the implementa-
tion (when, for example, a component or a cross-component
dependency is added or removed). Therefore, stable periods
are not expected to be equal for all metrics.

D. Statistical Analysis

The aim of the experiment is to see whether the architecture
metrics listed in Table I are correlated with the ratio of local
change. To this end, we first define a null hypothesis for each

of the twelve metrics that the desired value for the metric
(e.g., a low number for the number of components or a high
percentage of internal code) is not associated with a high (or
low) ratio of local change.

To determine whether a null hypothesis can be rejected we
perform a correlation test between the values of the snapshot-
based metric and the ratio of local change. The specific
correlation test used here is the Spearman rank correlation
because we cannot assume a normal distribution in any of the
metrics. Furthermore, because the hypotheses are directional a
one-tailed test is performed. When the correlation test shows
a moderate to strong correlation, the null-hypothesis can be
rejected, meaning that for a specific snapshot-based metric the
values are correlated with the ratio of local change.

Following Hopkins [13], we consider a significant correla-
tion higher than 0.3 (or lower than−0.3) to indicate a moderate
correlation, while a significant correlation score higher than
0.5 (or lower than −0.5) indicates a strong correlation. For a
correlation to be significant the p-value of the test needs to be
below 0.01.

In this set-up, multiple hypotheses are tested using the same
dataset. In this case a Bonferroni correction [13] prevents the
finding of a correlation by chance simply because one performs
many different tests. The correction that needs to take place
is the multiplication of the p-value of each individual test by
the number of tests performed. If the resulting p-value is still
below 0.01 the result of the test can be considered significant.
Note that the use of the Bonferroni correction might lead
to false negatives, i.e., not rejecting a null hypothesis even
though there is a correlation. Our approach here is to be
conservative by applying the correction. (The impact of this
choice is discussed in Section VIII-3.)

E. Preventing Project Bias

In this setup, data-points from several projects are com-
bined into a single data-set to derive a correlation, instead
of calculating the correlation on a per project basis. This is
primarily done because we are interested in a general trend
across projects. Additionally, architecture-level metrics are
expected to remain stable for long periods of time, resulting
in just a few data-points per project, which makes it hard to
derive statistically significant results.

However, it is possible that a single system contributes a
disproportionately large number of data-points to the sample
used for correlation. If this is the case, a significant correlation
might be found just because the correlation occurs within
a single system. To determine the impact of this issue we
perform a multiple linear regression analysis for all significant
correlations.

The input of such an analysis is a linear model in which the
dependent variable (i.e., the ratio of local change) is explained
by a set of independent variables (i.e., the value of one of the
snapshot-based metrics) plus one dummy variable per project.
To determine which independent variables are significant we
apply a stepwise selection using a backward elimination
model [13]. This process iterates over the input model and
eliminates the least significant independent variables from the
model until all independent variables are significant. If the

resulting model contains the snapshot-based metric as the most
significant factor (expressed by the R-squared value of the
individual factor) we can conclude that the influence of the
specific projects is negligible.

F. Summary

To summarize, the procedure for testing the correlation
between each snapshot-based architecture metric and the his-
torical ratio of localized change becomes:

Step 1: Define when a metric is considered stable
Step 2: Determine the change-set series for which the

snapshot-based metric is stable on a per project/per
metric basis

Step 3: Calculate the historical metric per change-set series
Step 4: Per metric, calculate the correlation between the

snapshot-based metric value and the historical metric
using data from all projects

Step 5: Verify the influence of individual projects on signifi-
cant correlations

V. EXPERIMENT IMPLEMENTATION

The metrics investigated in this experiment are architecture
metrics, each quantifying a different property of the software
architecture. Thus, we expect the metrics to be stable as long as
the properties of architecture under investigation of a system
is stable. The context of this experiment is that of software
analysts and software quality evaluators. In such a context it
is common practice to place a system within a bin according
to its metrics in terms of different categories, e.g., 4 is a low
number of components, 8 is a moderate number of components
and 20 is a large number of components. A change in metric is
interesting (and thus significant) when the value of the metric
shifts from one bin to another.

However, for most of the snapshot-based metrics there is
no intuitive value which indicates when a systems should be
placed in the “low”, “moderate” or “large” category. Therefore,
we take a pragmatic approach by defining a bin-size of 1.
For example, if the number of components for a system on
(t1, t2, t3, t4, t5) is (4,4,5,6,6), the stable periods are considered
to be t1− t2 and t4− t5.

Similarly, for percentage and ratio metrics a change is
considered significant when the value is placed in a different
bin, with an absolute bin-size of 0.01. For example, when the
values of the metric on snapshots (t1, t2, t3) are (0.243, 0.249,
0.251), the snapshots t1 and t2 are considered to be equal,
while snapshot t3 is considered to be a significant change.
The implications of choosing this bin-size are discussed in
Section VIII-2.

A. Stable Period Identification

To determine the time-periods for which a snapshot-based
metric is stable, the value of the metric must be calculated
for different snapshots of the system. To obtain the most
accurate result a snapshot should be taken after each change-
set. However, given the large number of change-sets this
approach requires an enormous amount of calculation effort.
To compromise between precision and calculation effort we
use a sampling approach.

Snapshots of the system are extracted on regular intervals,
i.e., on every first day of the month, and all change-sets
between snapshots for which the snapshot-based metrics are
stable are grouped together into a single change-set series. If
the value of the snapshot-based metric changes significantly
(as defined above) between snapshots tn and tn+1 this period
is called a transition period. All change-sets up until snapshot
tn are grouped into a single change-set series, while all change-
sets within the transition period, i.e., between tn and tn+1,
are discarded. The effects of this choice are reflected upon
in Section VIII-2.

For a rapidly changing metric the effect may be that all
data-points are discarded, simply because the metric changes
significantly in between all the snapshots. An example of this
would be the metric of Lines of Code, which is expected to
change often. If this is the case we should observe a low
number of short stable periods for a metric, which would call
for taking a shorter time-interval.

A change in the value of the snapshot-based metric indi-
cates a change in the architecture of the system. Because our
study only investigates stable periods the study is focussed on
determining the effect of these architectural changes, instead
of the nature of the architecture changes themselves.

In this experiment we take one snapshot for each month
that the system is active, i.e., changes are being made to
the code. The snapshots are obtained from the source-code
repository on the first day of each month. A more fine-
grained interval (for example every week) might provide more
accurate results, but since architecture metrics are not expected
to change frequently a monthly interval is expected to be
sufficient. The consequences of the decision for a sampling
approach and the chosen sample-size are discussed in Sec-
tion VIII-2.

B. Subject systems

We used the following guidelines to determine the set of
subject systems:

1) Considerable length of development: At least a year’s
worth of data needs to be available in order to provide
a representative number of change-sets.

2) Subversion repository: This source-code reposi-
tory system facilitates easy extraction of individ-
ual change-sets by assuming that each commit is a
change-set. In addition, this source-code repository
exists long enough to enable the extraction of long
histories of native commits.

3) Written in Java: Although the metrics are technol-
ogy independent we have restricted ourselves to the
Java technology because tool-support for calculating
metrics for Java is widely available.

While choosing the systems we ensured that the set contains a
mix of both library projects as well as complete applications.
Table II lists the names of the systems used together with the
overall start date and end date considered. The start date has
been chosen based on the availability in the repository, the
end date is either the last date in the repository or the date on
which the experiment has been executed. The last two columns
show the size of the subject system on respectively the start

TABLE II. SUBJECT SYSTEMS USED IN THE STUDY

Period Size (KLOC)
Name Start End Start End
Ant 2000-02 2011-05 3 97
Argouml 2008-03 2011-07 113 108
Beehive 2004-08 2008-10 45 86
Crawljax 2010-01 2011-07 6 7
Findbugs 2003-04 2011-07 7 97
Jasperreports 2004-01 2011-08 28 171
Jedit 2001-10 2011-08 35 79
Jhotdraw 2001-03 2005-05 8 20
Lucene 2001-10 2011-08 6 67
Struts2 2006-06 2011-07 25 22

date and the end date to show that the systems have indeed
changed over time.

C. Architectural Model Instantiation for Java

To calculate the different metrics, we need to define
components for each of the subject systems. To accurately
model whether a developer needed to change a single or
multiple components we use the development view-point [16]
on the implemented architecture of the systems. Based on the
positive results in our earlier approaches [4], [5] we define
the components of a system to be the top-level packages of a
system (e.g., foo.bar.baz, foo.bar.zap, etc).

Direct call relations between modules are considered to
be a dependency. In line with the mechanisms of hiding
implementation details in Java calls to an interface or an super-
class create a dependency to the interface or the declared
type, but not to classes implementing the interface or classes
overriding the called method. The volume of source code
modules is quantified by Lines of Code, i.e., the sum of all
lines which contain non-empty, non-comment characters.

All metrics are calculated on relevant source-code modules
using the Software Analysis Toolkit of the Software Improve-
ment Group (SIG).2 In this experiment, a module is considered
to be relevant if it is production code which resides in the main
source-tree of the system. Code written for testing or demo
purposes is considered to be out of scope for this experiment
(and therefore not included in the numbers of Table II).

VI. EXPERIMENT RESULTS

The raw data of the experiment is available in an on-line
experiment package located at:

http://www.sig.eu/en/QuantifyingEncapSA
This package contains:

D1: The descriptions of the top-level components and the
scope used for each project

D2: The data-sets containing the change-sets with relevant
modules used as an input to calculate the ratio of local
change for a given period

D3: The data-sets listing the values of the snapshot-based
metric for each month in which changes to the system
have been made used to determine the stable periods

D4: The result of combining data-set D2 and D3 using a
bin-size of 1 and 0.01, respectively

2http://www.sig.eu

TABLE III. DESCRIPTIVE STATISTICS FOR THE STABLE PERIODS PER SNAPSHOT-BASED METRIC

Months change-sets series length Ratio of local change
Metric periods Min Med. Max covered Min Med. Max total > 10 Min Median Max
RCI 94 1 4.0 38 80.9 % 3 113.0 968 17760 93.6 % 0.00 0.84 1
CCD 71 1 6.0 40 85.9 % 3 222.0 1178 19011 97.2 % 0.37 0.84 1
ACD 111 1 3.0 38 75.6 % 1 92.0 954 16564 91.9 % 0.00 0.85 1
NCD 74 1 4.5 40 83.6 % 3 192.5 1174 17922 95.9 % 0.37 0.84 1
CDI 65 1 6.0 50 88.3 % 1 224.0 2334 20526 95.4 % 0.00 0.84 1
IBC 122 1 3.0 35 68.1 % 3 67.5 715 13811 95.9 % 0.24 0.86 1
OBC 111 1 3.0 42 71.8 % 3 68.0 1337 15346 94.6 % 0.25 0.86 1
IC 119 1 2.0 41 71.2 % 2 50.0 1257 14759 91.6 % 0.16 0.86 1
NBD 108 1 3.0 38 75.8 % 3 88.5 846 15436 94.4 % 0.00 0.84 1
CB 82 1 3.0 77 80.6 % 3 76.5 5147 19345 91.5 % 0.35 0.86 1
MSUI 99 1 3.0 35 77.1 % 1 91.0 1176 18028 93.9 % 0.36 0.84 1
NC 59 1 6.0 53 90.8 % 7 262.0 1805 21428 96.6 % 0.18 0.83 1

A. Stable Periods

The first step in the experiment is to determine the stable
periods for each of the twelve snapshot-based metrics. Descrip-
tive statistics of the stable periods per metric illustrating four
important characteristics of the data-set are shown in Table III.

First of all, in the second column of Table III the number
of stable periods per metric is shown. Because this number
exceeds the number of projects (10) in all cases we observe
that the metrics are changing over time, which indicates that
our definition of stability for the metrics is not too lenient.

Secondly, descriptive statistics of the number of months
per stable period are shown in columns 3−5 of Table III. As
discussed in Section V-A it is desirable for a snapshot-based
metric to remain stable for a considerable period of time to
enable the definition of corrective actions. We observe that the
median number of months in a stable period variates between
two and six months, with higher values up to three to six years.
Even though on the low end there exists stable periods that last
only a single month, such a short time-frame is still sufficient
to define corrective actions.

Thirdly, the sixth column of Table III shows the percentage
of development time which is covered by the months in all
stable periods. We observe that this percentage is at least 65%
for all metrics, i.e., more than half of the total development
time of the systems is covered by stable periods. Thus, the
metrics are stable enough to be used in the context of our
experiment.

Lastly, columns 7−11 of Table III show descriptive statis-
tics for the length of the change-set series based on the stable
periods. As discussed in Section IV-B it is desirable to have
longer change-set series to ensure an accurate representation
of the ratio of local change. However, Table III shows that
there are change-set series containing only a single change-
set, which means that the ratio of local change will either
be one or zero. When many change-sets series contain only
a few change-sets the accuracy of the ratio of local change
could be considered inadequate. However, as column 11 shows
that for all metrics at least 91% of the change-sets series
contain more than ten change-sets (up to over 5000 change-
sets), indicating that these change-sets series are sufficiently
accurate and therefore all of the series can be used in the
current experiment.

B. Ratio of local change

For each of the snapshot-based metrics the ratio of local
change is calculated based on the stable periods, columns 12−
14 of Table III shows descriptive statistics of the result of

TABLE IV. CORRELATION VALUES BETWEEN EACH SNAPSHOT-BASED
METRIC AND THE RATIO OF LOCAL CHANGE

Metric Correlation Corrected p-value p-value
RCI 0.16 11.3 0.94
CCD −0.27 0.13 0.01
ACD −0.26 0.04 < 0.01
NCD −0.19 0.59 0.05
CDI 0.32 11.94 1.00
IBC -0.30 < 0.01 < 0.01
OBC -0.31 < 0.01 < 0.01
IC 0.47 < 0.01 < 0.01
NBD −0.22 0.14 0.01
CB 0.29 0.05 < 0.01
MSUI −0.08 2.42 0.20
NC −0.26 0.27 0.02

this calculation. We observe that all metrics show considerable
variation in the ratio of local change. The central tendency of
the ratio of local change appears to be close to 0.85 for all
metrics. This indicates that it is common to make more local
than non-local changes during periods in which a snapshot-
based metric is stable, which is inline with the expectations that
design decisions that change often are indeed encapsulated.

C. Correlation values

Using the values of the snapshot-based metrics and the ratio
of local change we calculate the Spearman rank correlation
between the two samples. Table IV shows the results of the
tests with both the corrected and the original p-values.

As can be seen from the results, many of the correlation
tests do not result in a significant correlation. This result is
expected for the control variables MSUI, CB and NC, but
for the other metrics a lack of significance is unexpected.
One reason for this result could be that the number of data-
points in the sample for a metric is not large enough to
detect correlation. However, looking at the size of the samples
as displayed in the second column of Table III this is not
likely. Moreover, using a power t-test to determine the required
sample size needed to find correlation shows that all samples
contain enough data-points [13].

For IBC, OBC and the IC metric the result of the cor-
relation tests is significant even after applying the correction.
For these three metrics we performed a multivariate regression
analysis to determine whether any of the projects have a signif-
icant influence on the found correlation (see Section IV-E for
details about this approach). In all three cases we determined
that the models are suitable for the data and that the value
of the snapshot-based metric is by far the most significant
factor in each model. In other words, the snapshot-based metric
explains most of the variation in the ratio of local change. The
detailed models can be found in [3, Chapter 8].

VII. DISCUSSION

The results of the experiment shows that there is not
enough evidence to reject the null hypothesis that the value
of the metric is related to a higher/lower historical ratio of
local change for the metrics RCI, CCD, ACD, NCD, NBD,
MSUI, CDI, CB, and NC.

For IBC, OBC and IC the found correlation is moderate,
thus the null hypothesis may be rejected. In other words, the
results of the experiment shows that the percentage of inbound
code, the percentage of outbound code and the percentage of
internal code are correlated with the historical ratio of local
change.

This correlation can be explained by the fact that these
metrics quantify the percentage of code in the “requires”
interface (OBC), the “provided” interface (IBC) and non-
interface code (IC) of the components of a system. The larger
the interfaces of a component, the more likely it is that changes
in one place will propagate to other components. From this
point of view, these metrics are measuring the extent, e.g., the
“width”, of the connection between components instead of the
strength of these connections.

Despite the relationship between the metrics, e.g., a larger
“requires” interface automatically leads to a lower percentage
of non-interface code, we observe that the quantification of all
non-interface code provides a stronger correlation than a quan-
tification of either the “required” or the “provided” interfaces
within a system. Moreover, the percentage of internal code is
more closely related to the notion of encapsulation as defined
in Section IV-A. Based on these observations the answer to
our research question is:

The percentage of internal code can serve as an
indicator for the success of encapsulation of an
implemented software architecture.

The results show that for nine metrics there is insufficient
evidence to conclude that these metrics have indicative power
for the level of encapsulation of a software architecture. For
the three control variables (MSUI, CB and NC), this result
can be attributed to a difference in goal. These metrics are
primarily designed to quantify the analyzability of a system
instead of the encapsulation.

The other metrics for which no significant correlations were
found (i.e., RCI, CCD, ACD, NCD, CDI and NBD) are all
based on a graph view (boxes and arrows) of the software
architecture. Possibly, the inability of these metrics to measure
encapsulation derives from the over-simplification inherent in
such a view. More specifically, even though these metrics
capture the strength of the dependencies between components,
we suspect that they are not able to properly quantify the extent
of the dependency between components.

A. Generalization

The current implementation of the experiment limits the
generalizability of the results to open-source, Object-Oriented
systems written in Java. In our previous work [5] we al-
ready investigated the behavior of the percentage of inbound,
outbound and internal code on different technologies and
found little variance between technologies, but replication of

our experiment using systems with other characteristics (i.e.,
non object-oriented systems, industry systems) is needed to
determine the exact situations in which the metrics are usable.
Because the design of the experiment as described in Sec-
tion IV does not impose any limitations on the characteristics
of the systems we believe that this can be done with relatively
little effort.

Furthermore, the fact that we only examined the stable
periods of these systems means that the indicative power of
the metrics cannot be ensured while a system is undergoing
large refactorings on the level of the architecture. We do not
consider this a problem, since the snapshot-based metrics aim
to quantify characteristics of the architecture of a system and
are therefore expected to remain stable for longer periods. This
is supported by the data in Table III which shows that the
metrics are stable for an average period of at least two months,
and are stable for more than 60% of the time a system is under
development.

B. Implications for Architecture Evaluations

The implication of these results for late architecture eval-
uations is that the percentage of internal code can be used to
reason about the level of encapsulation within a system. We
envision that a low percentage of internal code could be a
reason to steer the refactoring of a code base to internalize
modules within components.

Based on the findings in this report, the Software Im-
provement Group (SIG, a consultancy firm specialized in
the analysis of the quality of software systems) has decided
to include the percentage of internal code in its suite of
metrics used to conduct (repeated) architectural evaluations.
This gave us the opportunity to observe experts in the fields of
architecture evaluations while they were using this percentage
in the evaluation and monitoring of over 50 industrial systems
implemented in a wide variety of technologies (including Java,
C#, Cobol, and legacy 4GL languages). Based on these obser-
vations, and on semi-structured interviews with 11 experts, we
were able to get a first insight into those situations in which
the percentage is considered useful.

In particular, this evaluation showed that the percentage of
internal code, combined with the percentages of outbound and
inbound code, are used for targeted improvements, provide a
basis for useful discussions, and can serve as a communica-
tion device between developers and project management. The
details about the design and results of this study are described
by Bouwers et al. [6].

C. Metric Stability

As can be seen in Table III, the metrics measured on
the level of the architecture of a system have the tendency
to be stable for a period between two and six months. The
implication of this finding is that the assumption that the value
of a snapshot-based metric is representative for all changes that
occurred during the entire history of a system is not correct. If
this is the case on the system-level, this assumption must also
be verified when these types of experiments are performed
on the level of modules or units. An alternative solution is
to explicitly encode these assumptions into the design of the
experiment, as we have done in Section IV.

VIII. THREATS TO VALIDITY

Following the guidelines of Wohlin et al. [24] the threats to
the validity of the results of the experiment are categorized in
four categories addressing construct, internal, external and con-
clusion validity. Because the generalization of the results (ex-
ternal validity) has already been addressed in Section VII-A,
this category of threats is not discussed in detail in this section.

1) Construct validity: The basis for our experiment is the
assumption that the ratio of local change accurately models
the concept of encapsulation. We believe that this is the case
because the relation between encapsulation and the localization
of change has been made explicit by, amongst others, Booch
et al. [2]. In addition, “encapsulate what changes” is a well
known and widely recognized design principle [11].

A second question regarding construct validity is whether
the top-level packages of a software system can be used as the
architectural components of a software system. Even though
we did not perform an explicit validation of the component-
structure with the developers of the systems in our experiment,
manual inspection of the naming of the top-level packages
suggests they comprise valid chunks of functionality.

A last question is whether the assumption that a commit
into the Subversion source-code repository of the systems is
a coherent unit of work is valid. This assumption might not
hold for developers who have a particular style of committing
code, for example always committing several fixes at once
or committing changes made to each component in isolation.
Although this effect might exist we believe that this threat is
countered by taking into account several projects, and thus
different developers with a different style of committing.

2) Internal validity: As discussed before, there might be
confounding factors which explain the correlation between the
snapshot based metric values and the ratio of local change.
Two of these confounding factors, the influence of specific
projects on the significant correlations and the influence of the
size of the system in the metrics, have already been addressed
in the design and results of the study.

A second confounding factor is the choice for monthly
snapshots to determine stable periods for the snapshot-based
metrics. Taking different periods can result in different stable
time-periods, which can influence the variance of the ratio
of local change. As can be determined from the data in
Table III, the median number of months which are taken
into account per stable period is two to six months, covering
over 60% of the development time. Thus, a one month period
between snapshots already covers a considerable portion of
the development of the system, using a shorter period of time
between snapshots does not seem warranted.

A related issue is that the value of a snapshot-based metric
could fluctuate significantly between two snapshots of the
system, but is still considered to be equal because the value
has not changed significantly on the first of the month. Given
the average length of the stable-periods this situation does not
occur often enough to influence the results significantly.

A third factor is the choice to consider a percentage stable
as long as the value stays within the same bin with an absolute
bin-size of 0.01. As discussed before, taking different bin-
size can lead a more (or less) variance in the snapshot based

metric, leading to more (or less) co-variance with the ratio of
local change. The median length of the periods, the number
of change-sets per period and the variation in the metrics as
shown in Table III do not indicate that the absolute bin-size is
too small or too large for any of the metrics.

Moreover, we believe that determination of the optimal
thresholds per snapshot based metric is a new research topic in
its own right. Note that in our situation the pragmatic choice of
bin-size can only cause false negatives, e.g., using a different
bin-size might lead to finding significant correlations where
there is none with the current bin-size. In contrast, changing
the bin-size does not invalidate the correlations found with the
current bin-size.

3) Conclusion validity: The final question is whether the
conclusions drawn from the data are sound. On the one hand,
the metrics for which we do reject the null-hypothesis might
not be valid indicators. This would be the case when there
is no rationale for the correlation between the value of the
snapshot-based metric and the ratio of local change. However,
as discussed in Section VII there is a logical explanation for
this correlation, thus we believe that the conclusions drawn
from the data are valid.

On the other hand, the metrics for which we do not reject
the null-hypothesis might be valid indicators due to the use
of the Bonferroni correction. Inspecting the non-corrected p-
values shown in Table IV shows that without correction ACD
and CB also provide significant correlations with p < 0.01.
However, in both cases the correlation values is below 0.3 and
thus considered to be low, which means that not rejecting the
null hypothesis remains correct.

IX. RELATED WORK

The change-history of a software system has previously
been used, amongst others, to validate designs [27], predict
source-code changes [25] and for predicting faults [12]. The
majority of this work is focussed on predicting which artifacts
are going to change together, while our focus is on correlating
snapshot-based metrics with historical metrics. Apart from this
difference in goal, the artifacts which are considered are on a
different level (i.e., file versus components) or of a different
nature (i.e., code versus faults).

With respect to the topic of validating snapshot-based
metrics against change history of a system there is again a
large body of work. As mentioned before, many class level
metrics have been validated extensively, see Lu et al. [19] for
an overview.

On the component level this type of validation has been
done by Yu et al. [26]. In this experiment, the relationship
between the external co-evolution frequency (e.g., non-local
change) and several size and coupling-related metrics is inves-
tigated using the complete history of nine open-source projects.

However, we are not aware of any study which validates
system-level architecture metrics against the change-history of
a system. Because of this we considered the validation of
system-level architecture metrics for measuring encapsulation
as an unresolved problem.

X. CONCLUSION

The goal of this paper is to determine which existing
system-level architecture metrics provide an indication of the
level of encapsulation of an implemented software architecture
in the context of late architecture evaluations. In this paper, we
make the following contributions:

1) An experiment design in which we correlate the
value of twelve architecture metrics with the ratio
of local change during periods for which the metrics
are representative.

2) A stability analysis on twelve metrics that shows
that the variability of a metric needs to be taken
into account when comparing snapshot-based metrics
against metrics based on multiple snapshots of a
system.

3) Strong evidence that the percentage of internal code
provides an indication of the success of encapsulation
of an implemented architecture.

The key implications of these results are two-fold: first,
the percentage of internal code is suitable to be used in the
evaluation of an implemented software architecture, a finding
which is confirmed by our follow-up study [6]. Secondly, the
results show that the twelve architecture metrics tend to be
stable for a period of two to six months. This property needs
to be taken into account in any experiment in which these
specific snapshot-based metrics are correlated against metrics
based on multiple snapshots of a system. More generally, the
assumption that a snapshot-based metric is representative for
the period of time on which an historical metric is calculated
must be verified for any experiment in which these two types
of metrics are correlated.

There are two main areas for future work. First of all, to
continue our earlier verification efforts of the usefulness of
these architecture metrics [6] and investigate the relationship
between these metrics and this type of non-technical aspects of
the software development process such as costs and operational
risks. In addition, to determine which additional architec-
ture metrics (i.e., metrics quantifying other quality attributes)
should be used in combination with these metrics to come to
a well balanced assessment.

Secondly, we envision a study aimed towards determining
the best way to define the stability of software metrics. Such
a study would not only improve the experiment design as
proposed in this paper, it would also help in interpreting
metrics currently used in the monitoring of software systems.

REFERENCES

[1] V. R. Basili, G. Caldiera, and H. D. Rombach. The goal question metric
approach. In Encyclopedia of Software Engineering. Wiley, 1994.

[2] G. Booch. Object-oriented analysis and design with applications (2nd
ed.). Benjamin-Cummings Publishing Co., Inc., Redwood City, CA,
USA, 1994.

[3] E. Bouwers. Metric-based Evaluation of Implemented Soft-
ware Architectures. PhD thesis, Delft University of Technol-
ogy, 2013. Available at http://repository.tudelft.nl/view/ir/uuid:
6b65c5f5-398c-4a41-8806-31c638b1891c/.

[4] E. Bouwers, J. Correia, A. van Deursen, and J. Visser. Quantifying
the analyzability of software architectures. In Proceedings of the
9th Working IEEE/IFIP Conference on Software Architecture (WICSA
2011). IEEE Computer Society, 2011.

[5] E. Bouwers, A. van Deursen, and J. Visser. Dependency profiles for
software architecture evaluations. In Proceedings of the 27th IEEE
International Conference on Software Maintenance (ICSM 2011). IEEE
Computer Society, 2011.

[6] E. Bouwers, A. van Deursen, and J. Visser. Evaluating usefulness of
software metrics: An industrial experience report. In Proceedings of
the 35th International Conference on Software Engineering, 2013.

[7] L. C. Briand, S. Morasca, and V. R. Basili. Measuring and assessing
maintainability at the end of high level design. In Proceedings of
the Conference on Software Maintenance (ICSM 1993), pages 88–97,
Washington, DC, USA, 1993. IEEE Computer Society.

[8] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,
R. Nord, and J. Stafford. Documenting Software Architectures: Views
and Beyond. Addison-Wesley, Boston, MA, 2003.

[9] P. Clements, R. Kazman, and M. Klein. Evaluating Software Architec-
tures: Methods and Case Studies. Addison-Wesley Professional, 2002.

[10] L. Dobrica and E. Niemelä. A survey on software architecture analysis
methods. IEEE Trans. on Software Engineering, 28(7):638–653, 2002.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: el-
ements of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

[12] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting fault
incidence using software change history. IEEE Transactions on Software
Engineering, 26:653–661, July 2000.

[13] W. G. Hopkins. A new view of statistics. Internet Society for Sport
Science, 2000.

[14] P. Kogut and P. Clements. The software architecture renaissance.
Crosstalk - The Journal of Defense Software Eng., 7:20–24, 1994.

[15] H. Koziolek. Sustainability evaluation of software architectures: a
systematic review. In Proceedings 7th ACM SIGSOFT International
Conference Quality of Software Architectures (QoSA 11), QoSA-
ISARCS, pages 3–12, New York, NY, USA, 2011. ACM.

[16] P. Kruchten. The 4+1 view model of architecture. IEEE Software,
12(6):42–50, 1995.

[17] T. Kuipers and J. Visser. A tool-based methodology for software
portfolio monitoring. In Software Audit and Metrics, Proceedings of
the 1st International Workshop on Software Audit and Metrics, pages
118–128. INSTICC Press., 2004.

[18] J. Lakos. Large-scale C++ software design. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 1996.

[19] H. Lu, Y. Zhou, B. Xu, H. Leung, and L. Chen. The ability of
object-oriented metrics to predict change-proneness: a meta-analysis.
Empirical Software Engineering, 17:200–242, 2012.

[20] T. J. McCabe. A complexity measure. In ICSE ’76: Proceedings of the
2nd international conference on Software engineering. IEEE Computer
Society Press, 1976.

[21] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053–1058, 1972.

[22] D. Romano and M. Pinzger. Using source code metrics to predict
change-prone java interfaces. In Proceedings of the 27th IEEE In-
ternational Conference on Software Maintenance (ICSM 2011). IEEE
Computer Society, 2011.

[23] S. Sarkar, G. M. Rama, and A. C. Kak. API-based and information-
theoretic metrics for measuring the quality of software modularization.
IEEE Trans. of Software Engineering, 33(1):14–32, 2007.

[24] C. Wohlin, P. Runeson, M. Host, C. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in Software Engineering: an Introduction.
Kluver Academic Publishers, 2000.

[25] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll. Predicting
source code changes by mining change history. IEEE Transactions on
Software Engineering, 30:574–586, September 2004.

[26] L. Yu, A. Mishra, and S. Ramaswamy. Component co-evolution and
component dependency: speculations and verifications. IET Software,
4(4):252–267, 2010.

[27] T. Zimmermann, S. Diehl, and A. Zeller. How history justifies system
architecture (or not). In Proceedings of the 6th International Workshop
on Principles of Software Evolution, pages 73–83, Washington, DC,
USA, 2003. IEEE Computer Society.

